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THE INVERSE PROBLEM OF ACOUSTIC-WAVE SCATTERING FOR 
THIN ACOUSTICALLY RIGID BODIES* 

V.F. EMETS 

A description of an analytical algorithm for determining the shape of the 
scatterer with acoustically rigid walls is given for low-frequency 
scattering of plane acoustic waves. It is assumed that the amplitude of 
the scattering is known in a direction close to the direction of backward 
scattering, specified on a discrete set of probing wave numbers. The 
incident wavelength is of the order of the length of the scatterer and 
is much greater than its thickness. 

A problem similar to this was discussed in /l/, where, however, it 
was assumed that the amplitude of the scattered plane waves is known on 
the surface of the unit sphere, and in a continuous spectrum of fairly 
small wave numbers. It was also assumed that there is a priori informa- 
tion available on the minimum radius of the sphere containing the 
scatterer inside it, and that the constant which limits the potential 
gradient of the velocity of the liquid outside the sphere is known for 
the problem of determining the streamlines of a vortex-free liquid. 

Suppose that an absolutely rigid bodyD,with a boundary S, described by the equation 

r = eF (t, cp), 0 < t < a, 0 < cp Q 2n, F (0, 9) = F (a, cp) = 0 (1) 

is situated in a space filled with an acoustic medium, where r, cp, t are cylindrical coordin- 
ates with origin at the point 0, and E > 0 is a small parameter. The function F* (t,q) is 
assumed to be integrable with a square on the surface of the unit cylinder G={O,<t<a, 
O< cp <2n, r = f}. we will assume that a plane wave u,,(x)= Aoexp [ik(l,x)l is incident from 
infinity on the body D,(here and henceforth the time factor exp L--ikazl is omitted), where 
1 = (I,, 1% 13) is the unit vector indicating the direction of propagation of the wave, A, is 
its amplitude, x = (xl,x,,x3) is the radius vector of an arbitrary point of space drawn from 
the point 0, (,) is scalar multiplication, and k is the wave number, which is assumed to real 
and positive. The scattered field Up(x) satisfies the Helmholtz equation in the exterior D 
of the body D,, and the boundary condition 

(A + kz) up (x) = 0; duddn = -du,ldn, x E S (2) 

and also the Sommerfeld radiation condition, which can be written in the form 

up(x) = -4n Ix I-lexp (ik Ix I)f(k;l,v) +0(1x I-1) 

(lx I--~) 
Here A is the Laplace operator, didn is the derivative with respect to the direction 

of the external normal to S, Ix 1 = (x,x)L/* is the length of the vector x, v = x (x I-1 is the 
unit vector in the direction x, and f(k;l, V) is the scattering amplitude. 

Consider the problem of determining the function sF(t, Cp) from the scattering amplitude 
known in one of the directions in space, specified by a discrete set of wave numbers. 

The solution of the direct problem (l), (2) is unique and can be represented for x ES 
as the solution of the integral equation /2/ 

*Prikl.Matem.Mekhan.,48,1,133-136,1984 



90 

.p,w=& [u(y)-u(x)]4-‘-dS,& s any Ix-YI s u (Y) -Jg- 

3 @lx-Y1 _ , dS, 

5 s 
y I”-Yl (3) 

(U (x) = u, (x) + up(x), dldn, 3 didn (y)) 

where dS, =dS (Y) is an element of the area of the surface s at the point y =(yl, y,, ya). We 
obtain (3) 

f@; 1,v)=+(y)exp[- ik(v, y)]dS, 

If we have the inequality 

where M is a certain constant /2/, the solution of (3) can be represented in the form of a 
Neumann series. In particular, the zeroth approximation is given by the equation u (x) = 
%(x) ens, while the first term of the Neumann series for the scattering amplitude, using 
can be written in the form 

WI. rp) 
f. (k; 1, v) = A,ka [I - (v, l)] x 1 dqdt 5 dppexp(ikp[& - ~)coscp f (1~ - +)sincp] $_ ikt(l3 - v3)) 

G 0 

(1) , 

(4) 

Of course the function fo (k;l, V) contains the principal term of the asymptotic form of 
the scattering amplitude, and corresponds to taking into account the singly reflected waves 
assuming that kae is small. Then f. (k; 1,I) = 0, i.e., to a first approximation there is no 
forward scattering. As kl+O we have 

f. (k; 1, v) N f (k; 1, v) = A@ 11 - (v, 1)l V, + o (k”) (5) 

Here VO is a constant which is independent of the scattering direction and is equal to 
the volume of the scatterer. 

Then, if the scattering amplitude is known for a discrete set of fairly small probing 
wave numbers, relation (5) enables one to calculate the volume of the scatterer. 

By considering the integral over p in (4) as a function of aF(t,q) and representing it 
by a Taylor series in the neighbourhood of zero, we obtain 

f0 (k; 1, v) = A0 (ke)a 2-l [i - (v, l)] x S Fa (t, ‘p) exp [ikt (& - e)] dt + -I- G (E”) (6) 

G 

Note that expansion (6), which is uniform with respect to E , will also be finite if 
li =Vi, i = 1,2* 

Suppose the vectors 1 and v are fixed so that ~3~0, 1 , and the vector v is close to 
the backward-scattering direction, i.e., v=-1, while the function fo(k; 1,~) is known 
when k = k, (m = 1, 2, . . ., N). Then, from (6) we obtain the following set of integral equations 
of the first kind in terms of the function eaFa. (t, cp) : 

saSFa(t,~)exp[ia,t]dtd~=f,, m=1,2,...,N (7) 

(f,“= 2f, (k,; 1, v) (A,,k,a ii- (v, 1)1}-1, a,,, = k, (13 - VI)) 

From the mathematical point of view the solution of (7) is an ill-posed problem /3/, 
which, generally speaking, has an innumerableset of solutions, and these solutions are unstable. 
The problem arises of regularizing it and making it solvable, for example, by introducing a 
priori information on the observed object. 

In fact, when F(t, cp) = F(rp) we obtain the problem of determining the form of the region 
from its volume, reduced to a certain value, the solution of which is not unique. Hence we 

will put F (G (P) = 1L1 (t) % (CP) , and the function h,(cp)wi.ll be assumed known. We then obtain 

from (10) 

s g (t) exp [ia,,&] dt = o,, m = 1,2,. . , N (0) 

g (t) = eah,* (t), o,,,=f,,,(~La(~)dp)-’ 
It can be shown that if the numbers k, (m = 1,2, . . . . N;N --too) form a set having a point 

where bunching occurs at zero, then from data on the scattering m,the function g(t) from the 
set of integral equations (8) can be found uniquely. 

The normal pseudo-solution /3/ or (8) for any finite !i can be represented in the form /d/ 
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(9) 

and in a quadratic metric approaches the accurate solution as N -+cm. The coefficients A,,, 

(m = 1, 2, . . ., N) are a unique and stable solution of the linear set of algebraic equations 

A’ 

z 43 
exp [ia (am - a,)] - 1 

i(am-an) = %v m=l,2,...,N 
n=1 

10) 

However, as N-a,, system (10) becomes degenerate and it is necessary to use regular- 
ization methods /3/. 

As an example, consider the problem of determining the form of a thin prolate spheroid. 
Suppose 

&2P (t, cp) = g (t) = r*t (a - t), (1 = d (i - G)-'/* 

(Fig.l), the continuous curve), where d is the distance between the foci. 
Then, we obtain from (6) 

2a 
f. (/i; I, v) = A& [ 1 - (v, I)] n exp (ia) (IS 

sin a 
(- -) cos a f a 

a = '/s ka(l* - vg) 
(11) 

In Fig.2 we show graphs of lf(k; I, ~)\(2nd)-~ as a function of v in the Orzzs plane for 
kd= 2 and I = KJ,O, f),taken from /5/. 

Curves 1 and 2 correspond to E= 0,1 and E= 0.2, where the dots denote the results of 
calculations using (11). 

Similar curves are shown in Fig.3 for kd = 6, I = (0, 1, 0). 

As can be seen from Figs.2 and 3, Eq.(ll) gives a satisfactory approximation to the 
value 1 (k; 1,~) in the half-plane of backward scattering for small kae. 

exact 

Fig.1 Fig.2 Fig.3 

Suppose the incident wave propagates along the axis of rotation of the spheroid - the 

0x3 axis: u,, (x_) = A, exp (Ike). We will also assume that v=--1. Then from (Q) and (11) we 

which corresponds to k,a - 0, $a = n, k,a = 2n, &a = 3s. 
Obviously in this case the scattering amplitude does not change if the vectors and v 

are interchanged. We then obtain from (9) and (10) (Fig-l, the dashed curve) 

In view of the fairly good agreement between the curves in Fig.1 we can assert that to 
determine the form of a thin acoustically rigid prolate spheroid three values of o,,,(m= 2,3,4) 
are sufficient to determine its volume. 
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A CLASS OF EXACT SOLUTIONS WITH A UNIFORM DEFORMATION IN GAS DYNAMICS* 

S.A. POSLAVSKII and I.S. SHIKIN 

A new exact solution is obtained describing the motion of a rotating gas 
ellipeoid in which the ratio of the semiaxes remains constant (with an 
adiabatic index of S/3). The structure of this solution is in a certain 
sense similar to the structure of the solutions for an ellipsoid of a 
uniform ideal incompressible selfgravitating liquid, obtained in papers 
on the theory of equilibrium figures (see 1, 2/). 

The adiabatic motions of an ideal gas with a non-uniform deformation were first studied 
by Sedov /3, 4/, who obtained an exact non-stationary solution in the uniform case. 
Ovsyannikov /5/ showed that in a more general formulation the problem reduces to a set of 
nine second-order ordinary differential equations. This system allows seven first integrals 
connected with the conservation of energy and momentum of the gas cloud and "freezing in" of 
the vortex /5, 6/. An eighth integral was obtained in /7/ with an adiabatic index of S/3, 
and an exact solution oftheproblem of the dispersion of a non-rotating gas ellipsoid of 
rotation in a vacuum was found. The problem of the motion of a rotating spheroid was consid- 
ered in /8/. A qualitative investigation in the general case of motion with a uniform deform- 
ation of a triaxial gaseous ellipsoid was carried out in /9/.** 

1. Solutions with non-uniform deformation are characterized by a linear depedence of 
the Euler coordinates on the Lagrangians 

ra = MfXR (Q SP (1.1) 

Here and hence for the Greek subscripts take values from 1 to 3, and summation is 
carried out over the repeated indices. 

For an ellipsoidal distribution of the density and pressure, the adiabatic motions of a 
gas are described by the equations 

M,*= -+M-l)B"; D=detM, y=+, s=const (1.21 
u 

The density and pressure are given by the equations 

p P$) , p=+ po(cr)=po(0) i-~@(h)dh. u=+(&” + &? + &‘) (1.3) 
" 

where pO(o) is an arbitrary function. Fora finite ellipsoid with boundaries &' + 52 $ Eat = 
1 the function p,,(o) vanishes outside it. 

If E<O, the pressure falls with distance from the centre of the ellipsoid; if E>l), 
it increases. The first case may correspond, for example, to the motion of a gas cloud in a 
vacuum, and the second may correspond to the motion of an ellipsoid acted upon by an external 
pressure. 

The matrix M can be represented in the form 

M = Ol-‘Wz (1.4) 
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